Search results for "Photoreceptor protein"

showing 3 items of 3 documents

Induced Night-Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin

2019

In humans, vision is limited to a small fraction of the whole electromagnetic spectrum. One possible strategy for enhancing vision in deep-red or poor-light conditions consists of recruiting chlorophyll derivatives in the rod photoreceptor cells of the eye, as suggested in the case of some deep-sea fish. Here, we employ all-atom molecular simulations and high-level quantum chemistry calculations to rationalize how chlorin e6 (Ce6), widely used in photodynamic therapy although accompanied by enhanced visual sensitivity, mediates vision in the dark, shining light on a fascinating but largely unknown molecular mechanism. First, we identify persistent interaction sites between Ce6 and the extra…

genetic structuresbiology010405 organic chemistrySinglet oxygenPhotoreceptor proteinRetinal010402 general chemistry01 natural sciencesVisual sensitivityeye diseasesTransmembrane protein0104 chemical scienceschemistry.chemical_compoundchemistryRhodopsinNight visionbiology.proteinBiophysics[CHIM]Chemical SciencesGeneral Materials SciencePhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSVisual phototransduction
researchProduct

2019

Cryptochromes are blue-light photoreceptor proteins, which provide input to circadian clocks. The cryptochrome from Drosophila melanogaster (DmCry) modulates the degradation of Timeless and itself. It is unclear how light absorption by the chromophore and the subsequent redox reactions trigger these events. Here, we use nano- to millisecond time-resolved x-ray solution scattering to reveal the light-activated conformational changes in DmCry and the related (6-4) photolyase. DmCry undergoes a series of structural changes, culminating in the release of the carboxyl-terminal tail (CTT). The photolyase has a simpler structural response. We find that the CTT release in DmCry depends on pH. Mutat…

0303 health sciencesMultidisciplinarybiologyTimelessChemistryCircadian clockPhotoreceptor protein010402 general chemistrybiology.organism_classification01 natural sciences0104 chemical sciences03 medical and health sciencesTransduction (biophysics)CryptochromeBiophysicsSignal transductionDrosophila melanogasterPhotolyase030304 developmental biologyScience Advances
researchProduct

Light-induced Changes in the Dimerization Interface of Bacteriophytochromes

2015

Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximat…

Histidine KinaseLightProtein ConformationMutantCrystallography X-RayBiochemistryProtein structureBacterial Proteinsx-ray scatteringcell signalingDeinococcusMolecular BiologybiologyPhytochromeHistidine kinaseMutagenesista1182Photoreceptor proteinDeinococcus radioduransCell Biologybiology.organism_classificationphotoreceptormolecular dynamicsProtein Structure TertiaryBiochemistryhigh performance liquid chromatography (HPLC)BiophysicsDeinococcusPhytochromeDimerizationProtein KinasesmutagenesisMolecular BiophysicsJournal of Biological Chemistry
researchProduct